skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heinrich, Lucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Among the well-known methods to approximate derivatives of expectancies computed by Monte-Carlo simulations, averages of pathwise derivatives are often the easiest one to apply. Computing them via algorithmic differentiation typically does not require major manual analysis and rewriting of the code, even for very complex programs like simulations of particle-detector interactions in high-energy physics. However, the pathwise derivative estimator can be biased if there are discontinuities in the program, which may diminish its value for applications. This work integrates algorithmic differentiation into the electromagnetic shower simulation code HepEmShow based on G4HepEm, allowing us to study how well pathwise derivatives approximate derivatives of energy depositions in a sampling calorimeter with respect to parameters of the beam and geometry. We found that when multiple scattering is disabled in the simulation, means of pathwise derivatives converge quickly to their expected values, and these are close to the actual derivatives of the energy deposition. Additionally, we demonstrate the applicability of this novel gradient estimator for stochastic gradient-based optimization in a model example. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026